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Optimization problem & Unconstrained optimization

Optimization problem in general

• Formally, an optimization problem in general (or abstract) form:

min
s.t. x∈ω

f(x) (1)

• A point that minimizes f over Ω

f(x) ≥ f(x∗), ∀x ∈ Ω (2)

• Maybe not exists!
• Or maybe not unique!
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Optimization problem & Unconstrained optimization

Unconstrained optimization problem

• Constraint set (or feasible set): Ω = Rn

• Decision variables are not constrained at all. The goal is only to minimize the objective
function.
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Optimization problem & Unconstrained optimization

Application of Unconstrained optimization problem

One popular application and its real-world applied situation:
• Application: Least square
• Real-world application: Data fitting

Problem statement:
• Input: A be m × n matrix, b be vector m × 1

Solve:
min

x
‖Ax − b‖ (3)
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Optimization problem & Unconstrained optimization

Application of Unconstrained optimization problem

Figure 1: Example data fitting.
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Second-Order Optimality Conditions

Motivation

Consider the unconstrained optimization problem of the form:

min{f(x) : x ∈ Rn}, f : Rn −→ R (4)

f non-linear.

Problem

How to find exactly minimum (or maximum) points of eq.(4)?
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Second-Order Optimality Conditions

Definition

Positive semidefinite matrix and positive definite matrix
Let f : An×n, d ∈ Rn, if :
• 〈Ad, d〉 ≥ 0 =⇒ A is positive semidefinite (A � 0).
• 〈Ad, d〉 > 0, d 6= 0 =⇒ A is positive definite (A � 0).
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Second-Order Optimality Conditions

Definition

Hessian matrix and Second-order theorem
Let x, x ∈ Rn and f ∈ C2. We have:
• Hf(x) = 52f(x) = 5(5f(x)) is called Hessian matrix.
• If x is a local minimizer =⇒ 5f(x) = 0,Hf(x) � 0 (Second-order necessary condition).
• If x ∈ Rn,5f(x) = 0,Hf(x) � 0 =⇒ x is strict local minimizer (Second-order sufficient

condition ).
• If U ⊆ Rn is a open convex set, x ∈ U,5f(x) = 0,Hf(x) � 0 =⇒ x is a global minimizer

(Second-order sufficient condition for a global minimizer).
• If 5f(x) = 0,Hf(x) is indefinite =⇒ x is a saddle point (Second-order sufficient

condition for a saddle point)
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Second-Order Optimality Conditions

Discussion

Proof: Second-order necessary condition for a local minimizer
• Let x is a local minimizer, |t| is small enough, ∀d ∈ Rn, Then:

f(x + td)− f(x) ≥ 0 (5)

• Because f ∈ C2, then:

f(x + td) = f(x) + t〈5f(x), d〉+ t2

2 〈52f(x)d, d〉+ o(t2) (6)

• We have 〈5f(x), d〉 = 0. Then:

0 ≤ f(x+ td)− f(x) = t2

2 〈52f(x)d, d〉+ o(t2) =⇒ 52f(x)d, d〉 ≥ 0 =⇒ 52f(x) � 0 (7)
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Second-Order Optimality Conditions

Discussion

Proof: Second-order sufficient condition for a local minimizer
• If 52f(x) � 0, let λ is a smallest eigenvalue of 52f(x)

=⇒ 〈52f(x)d, d〉 ≥ λ||d||2, ∀d ∈ Rn.
• We have 〈5f(x), d〉 = 0. Then

f(x + td) = f(x) + t2

2 〈52f(x)d, d〉+ o(t2) =⇒ f(x + td)− f(x)
t2 ≥ λ||d||2

2 +
o(t2)

t2 (8)

• |t| is small enough =⇒ f(x + td)− f(x) > 0, ∀0 6= d ∈ Rn =⇒ x is strict local minimizer
of f in Rn.
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Second-Order Optimality Conditions

Discussion

Proof: Second-order sufficient condition for a global minimizer
Let y ∈ U =⇒ ∃z ∈ (x, y):

f(y) = f(x) + 〈5f(x), y − x〉+ 1
2(y − x)THf(z)(y − x) (9)

Because 5f(x) > 0,Hf(x) � 0 =⇒ f(y) ≥ f(x). Thus, x is a global minimizer of f on U.
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Second-Order Optimality Conditions

Discussion

Consequence
Since: max{f(x)|x ∈ Rn} = −min{−f(x)|x ∈ Rn}, we have:
• If x is a local maximizer of f(x) =⇒ 5f(x) = 0 and 52f(x) � 0
• If 5f(x) = 0 and 52f(x) ≺ 0 =⇒ x is a strict local maximizer of f(x)
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Second-Order Optimality Conditions

Meaning of Second-Order Optimality Conditions

• The second order condition is a filter that helps identify the nature of stationary points is
a local minimum, local maximum, or saddle point. The result of the second derivative at
a point x tells us the slope of the tangent line.

• Useful in practice: Optimize for Machine Learing, Deep learing algorithmns.
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Second-Order Optimality Conditions

How to find ?

Let x ∈ An, f : An → R:
• We differentiate once to find 5f(x).
• Let 5f(x) = 0, we find all critical points.
• We differentiate twice to find 52f(x).
• For each point x0 in step (2), calculate 52f(x0). If:

• 52f(x0) � 0 =⇒ x0 is a local minimizer (if A convex x0 is a global minimizer).
• 52f(x0) ≺ 0 =⇒ x0 is a local maximizer.
• 52f(x0) is indefinite =⇒ x0 is a saddle points.

PTT Thanh & LN Nam Nonlinear Programming - Unconstrained Problems 15 / 64



Second-Order Optimality Conditions

Computational example

Problem 1: Find all critical points of f(x)

f(x) = x5 − 5x (10)

Proof:
- Let x → +∞ =⇒ f(x) → +∞; x → −∞ =⇒ f(x) → −∞. Thus, f(x) hasn’t global critical
points.
- f′(x) = 5x4 − 5 = 0 ⇔ x = ±1.
- f′′(x) = 20x3, f′′(1) = 20 > 0, f′′(−1) = −20 < 0 =⇒ x1 = 1 is a local minimizer, x2 = −1
is a local maximizer.
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Second-Order Optimality Conditions

Computational example

Problem 2: Find all minimizers and maximizers of f(x, y)

f(x, y) = 1
4(x

4 − 4xy + y4) (11)

Proof:
- We have:

5f(x, y) =
(

x3 −y
−x +y3

)
,52f(x, y) =

(
3x2 −1
−1 +3y2

)
(12)

- 5f(x, y) = 0 ⇔ (x, y) ∈ {(0, 0)T, (1, 1)T, (−1,−1)T}. We have:

52f(0, 0) =
(

0 −1
−1 0

)
,52f(1, 1) = 52f(−1,−1) =

(
3 −1
−1 3

)
(13)

- Because 52f(1, 1) � 0 and 52f(−1,−1) � 0 =⇒ (±1,±1)T is strict local minimizers. R2

is convex set =⇒ (±1,±1)T also is global minimizers.
- Because 52f(0, 0) /∈ {� 0,� 0} =⇒ (0, 0)T not is local critical points.
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Second-Order Optimality Conditions

Computational example

Problem 3: Consider the family of problems

minf(x, y) = x2 + y2 + βxy + x + 2y (14)

Proof:
- We have:

5f(x, y) =
(

2x + βy + 1
2y + βx + 2

)
,52f(x, y) =

(
2 β
β 2

)
(15)

- If β 6= ±2 =⇒ 5f(x, y) = 0 ⇔ (x∗, y∗) = (2β − 2, β − 4)/(4 − β2).
- If β = ±2, we have an inconsistent system of equations. Therefore, no critical points exist
for β = ±2
- Let A = Hf(x, y), λ is a eigenvalue of A. We have:

det(A − λI) = (2 − λ)2 − β2 = 0 ⇔ λ = 2 ± β (16)
- If −2 < β < 2 =⇒ A � 0, ∀λ > 0 =⇒ (x∗, y∗) is global minimizers.
- If |β| > 2 =⇒ λ1λ2 < 0 =⇒ (x∗, y∗) is saddle points.
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Important results in finite dimensions Implicit function theorem

What is implicit function?

If a function is written in the form of

y = f(x), e.g., y = 2x3 (17)

is called an explicit function.
And sometimes functions are given in the form

y − f(x) = 0 e.g., y − 2x3 = 0 (18)

is called an implicit function.
In general, implicit function are written in a general form as

F(y, x) = 0 (19)

1While we can always change an explicit function into an implicit function (by taking f(x) to the other side
of the equality) the reverse is not always true
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Important results in finite dimensions Implicit function theorem

Motivation

Question

1 Given a solution to a system of equations, are there other solutions nearby?
=> The analytic version of the implicit function theorem.

2 What does the set of all solutions look like near a given solution?
=> The geometric version of the implicit function theorem.
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Important results in finite dimensions Implicit function theorem

Implicit function theorem

Theorem: Implicit function theorem
Suppose that U ⊆ Rn, and V ⊆ Rm are open sets, and F : U × V → Rm is a function of class
C1. Let (x0, y0) ∈ U × V is a point such that F(x0, y0) = 0 and DyF(x0, y0) : Rm → Rm, the
derivative of F w.r.t y, is nonsingular, i.e DyF(x0, y0) 6= 0. Then

• There exists neighborhoods U1 3 x0 and V1 3 y0 and a C1 mapping y : U1 → V1 such
that a point (x, y) ∈ U1 × V1 satisfies F(x, y) = 0 if and only if y = f(x). The derivative
of y at x0 is given by

Dy(x0) = −DyF(x0, y0)
−1DxF(x0, y0) (20)

• Moreover, if F is k-times continously differentiable, i.e., F ∈ Ck, then f(x) ∈ Ck.
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Important results in finite dimensions Implicit function theorem

Proof of Implicit function theorem

At first, we need to setup something...

If necessary, considering the function

(x, y) 7→ f(x + x0, y + y0)− f(x0, y0) (21)

And, let
f(x) = (f1(x, y), . . . , fm(x, y)) (22)
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Important results in finite dimensions Implicit function theorem

Proof of Implicit function theorem

Df is continous ⇒ exist neighborhoods U0 ∈ Rn, V0 ∈ Rm that
∇yf1(x, y1)⊤

∇yf2(x, y2)⊤

...
∇yfm(x, ym)⊤

 (23)

is invertible for all (x, yi) ∈ U0 × V0.
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Important results in finite dimensions Implicit function theorem

Proof of Implicit function theorem

Question: Is every x ∈ U0, then there exists at most one y ∈ V0 such that f(x, y) = 0. By

contradiction, suppose that ∃y, z ∈ V0, y 6= z, f(x, y) = f(x, z) = 0. Due the mean value
theorem, ∃yi ∈ (y, z) that

fi(x, z)− fi(x, y) = 〈∇yfi(x, yi), z − y〉 (24)

And the previous matrix is non-singular, so y = z.

PTT Thanh & LN Nam Nonlinear Programming - Unconstrained Problems 24 / 64



Important results in finite dimensions Implicit function theorem

Proof of Implicit function theorem

Let Br(0) ⊆ V0
• f(0, y) 6= 0, ∀y ∈ Sr(0) := {y ∈ Rl : ‖y‖ = r} due to f(0, 0) = 0.
• ∃α > 0, ‖f(0, y) ≥ α‖ , ∀y ∈ Sr(0) due to f is continous.
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Important results in finite dimensions Implicit function theorem

Proof of Implicit function theorem

Consider the function
F(x, y) := ‖f(x, y)‖2 =

m∑
i=1

fi(x, y)2 (25)

that satisfies the properties
• F(0, y) ≥ α > 0, ∀y ∈ Sr(0)
• F(0, 0) = 0
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Important results in finite dimensions Implicit function theorem

Proof of Implicit function theorem

Because F is continous function, ∃U1 ⊆ U0 of 0 ∈ Rn such that

F(x, y) ≥ α

2 ,F(x, 0) ≤
α

2 ∀x ∈ U1, y ∈ Sr(0) (26)

fixed x ∈ U1, function y 7→ F(x, y) achieves its minimum on Br(0) at y(x) in the interior of
Br(0)

DyF(x, y(x)) = 2Dyf(x, y(x))f(x, y(x)) = 0 (27)

And the matrix Dyf(x, y(x)) is non-singular, so that

f(x, y(x)) = 0 (28)
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Important results in finite dimensions Implicit function theorem

Proof of Implicit function theorem

Writting ∆y := y(x +∆x)− y(y), by the mean value theorem

0 = Dxf(x̃, ỹ)∆x + Dyf(x̃, ỹ)∆y (29)

for some point (x̃, ỹ) one the line segment between (x, y(x)) and (x +∆x, y(x +∆x)). And as
‖∆x‖ → 0, ‖∆y‖ → 0, thus lead y(x) is continous. And by Taylors formula and continuity of

y(x), we prove that y(x) is Fréchet differentiable. If f ∈ C2, then y(x) ∈ C2. And in general, if

Ck, we prove by induction on k that y(x) is Ck.
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Important results in finite dimensions Implicit function theorem

Discussion about the analytic meaning

Problem

Solving the equation below:
f(x, y) = 0 (30)

for y as a function of x, and say y = f(x)

If we have a solution b = f(a), then in principle it is possible to solve for x near a, if the crucial
hypothesis Dyf(a, b) 6= 0 holds.
In this meaning, Implicit function theorem is a theorem about the possibility of solving a
system of nonlinear equations.
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Important results in finite dimensions Implicit function theorem

Discussion about the geometric meaning

There are 3 natural ways to represent a curve S ⊆ Rn

• As a graph
• As a level set
• Parametrically
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Important results in finite dimensions Implicit function theorem

Discussion about the geometric meaning
Considering the case n = 2
• Graph:

S = {(x, y) ∈ R2 : y = f(x) for x ∈ I}
OR

S = {(x, y) ∈ R2 : x = f(y) for y ∈ I}

 (31)

for some f : I → R, where I ⊆ R is an interval.
• Level set, is, a set of the form

S = {(x, y) ∈ U : F(x, y) = c} (32)

for some open U ⊆ R2, some F : U → R, some c ∈ R.
• Parametrically, in the form

S = {f(t) : t ∈ I} (33)
for some interval I ⊆ R, and some f : I → R2
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Important results in finite dimensions Implicit function theorem

Discussion about the geometric meaning

Figure 2: The line 2xy + 2 = 0 as the graph of f(x) = 2x + 2 or of g(y) = (y2)/2
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Important results in finite dimensions Implicit function theorem

Discussion about the geometric meaning

Figure 3: The thick arcs are the graphs of x 7→ ±
√

1 − x2
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Important results in finite dimensions Implicit function theorem

Discussion about the geometric meaning

Figure 4: The thick arcs are the graphs of y 7→ ±
√

1 − y2
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Important results in finite dimensions Implicit function theorem

Discussion about the geometric meaning

Figure 5: Can the thick line segments be a graph?
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Important results in finite dimensions Implicit function theorem

Why the Implicit Function Theorem is a great theorem?

Fact

With given k nonlinear equations in k unknowns:
• It is impossible to solve.
• It is often impossible to determine whether it has any solutions.

The Implicit Function Theorem allows us to (partly) reduce impossible questions about
systems of nonlinear equations to straightforward questions about systems of linear equations.
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Important results in finite dimensions Implicit function theorem

Some special cases of the implicit function theorem

Theorem: Implicit function theorem, m = n = 1
Suppose that F is real-valued C1 function defined for all (x, y) in open set U × V ⊆ R2.
• If f(a, b) = 0 and ∂yf(a, b) 6= 0, then the equation

F(x, y) = 0 (34)

implicitly determines y as a C1 function of x, i.e., y = f(x), for x near a. Moreover
f(a) = b.

• If f(a, b) = 0 and ∂xf(a, b) 6= 0, then the equation

F(x, y) = 0 (35)

implicitly determines x as a C1 function of x, i.e., x = f(y), for y near b. Moreover
f(b) = a.
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Important results in finite dimensions Implicit function theorem

Some special cases of the implicit function theorem

Theorem: Implicit function theorem, n = 2,m = 1
Suppose that F is a scalar function of class C1 function defined for all (x, y, z) in open set
U × V ⊆ R3.
• If f(a, b, c) = 0 and ∂zf(a, b, c) 6= 0, then the equation

F(x, y, x) = 0 (36)

implicitly determines z as a C1 function of (x, z), i.e., z = f(x, y) for (x, y) near (a, b).
Moreover, f(a, b) = c.

• Similarly, we also have results in the cases: f(a, b, c) = 0 and ∂yf(a, b, c) 6= 0; and
f(a, b, c) = 0 and ∂xf(a, b, c) 6= 0
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Important results in finite dimensions Implicit function theorem

Some special cases of the implicit function theorem

Theorem: Implicit function theorem, n = 1,m = 2
Suppose that F = (F1,F2) is function U × V → R2 of class C1 defined for all (x, y, z) in open
set U × V ⊆ R3.

• If F(a, b, c) = 0 and ∣∣∣∣∂yF1 ∂zF1
∂yF2 ∂zF2

∣∣∣∣ 6= 0 (37)

then

F(x, y, z) = 0 ⇔

{
F1(x, y, z) = 0
F2(x, y, z) = 0

(38)

implicitly determines (y, z) as a C1 function of x, i.e., (y, z) = f(x), for x near a.
Moreover, f(b, c) = f(a).

• Similarly, we also have results in the remain cases.
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Important results in finite dimensions Implicit function theorem

Computational example 1

Problem 01

Consider the equation
F(x, y, z) = xy + xz ln(yz) = 1 (39)

We know that (1, 1, 1) is a solution. Does the equation implicitly determine z as a function
f(x, y) for (x, y) near (1, 1) with f(1, 1) = 1? If so, find a formula for ∂xf(1, 1), and evaluate it
at (1, 1) = (1, 1).
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Important results in finite dimensions Implicit function theorem

Computational example 1
We have

∂zF = xln(yz) + x (40)
And at (x, y, z) = (1, 1, 1), F(1, 1, 1) = 1. So the Implicit Function Theorem guarantees that
there is a function f(x, y), defined for (x, y) near (1, 1) such that

F(x, y, z) = 1 when z = f(x, y) (41)
To find ∂xf, by using the original equation that defines z as a function of (x, y) to differentiate
both sides with respect to x.

y + zln(yz) + x∂z
∂x ln(yz) + xz

yzy∂z
∂x = 0 ⇔ ∂z

∂x = −y + zln(yz)
x + xln(yz) (42)

Evaluating at (x, y, z) = (1, 1, 1), and solving for ∂z
∂x . We have:

1 +
∂z
∂x = 0 ⇔ ∂z

∂x = −1 (43)
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Important results in finite dimensions Implicit function theorem

Computational example 2

Problem 02

Consider the system of equations

F1(x, y, u, v) = xyeu + sin(v − u) = 0 (44)
F2(x, y, u, v) = (x + 1)(y + 2)(u + 3)(v + 4)− 24 = 0 (45)

We know that (0, 0, 0, 0) is a solution. Does the system of equations implicitly determine (u, v
as a function of (x, y), i.e., (u, v) = f(x, y) for (x, y) near (0, 0)? If so, find a formula for
∂xf(x, y) at (x, y) = (0, 0)
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Important results in finite dimensions Implicit function theorem

Computational example 2

Let F =
(F1

F2

)
. Then(
∂uF1 ∂vF1
∂uF2 ∂vF2

)
=

(
xyeu − cos(v − u) cos(v − u)

(x + 1)(y + 2)(v + 4) (x + 1)(y + 2)(u + 3)

)
(46)

At (x, y, u, v) = (0, 0, 0, 0),(
∂uF1(0, 0, 0, 0) ∂vF1(0, 0, 0, 0)
∂uF2(0, 0, 0, 0) ∂vF2(0, 0, 0, 0)

)
=

(
−1 1

8 6

)
(47)

This matrix is invertible, so the theorem guarantees that the equations implicitly determine
(u, v) as a function of (x, y)
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Important results in finite dimensions Implicit function theorem

Computational example 2

Find ∂xf =
(
∂xf1
∂xf2

)
, where

(u
v
)
= f(x, y) =

(f1(x,y)
f2(x,y)

)
. Considering equations below:

xyeu + sin(v − u) = 0
(x + 1)(y + 2)(u + 3)(v + 4)− 24 = 0.

(48)

and differentiate everything with respect to x:

yeu + (xyeu − cos(v − u)) ∂u
∂x + cos(v − u)∂v

∂x = 0

(y + 2)(u + 3)(v + 4) + (x + 1)(y + 2)(v + 4)∂u
∂x + (x + 1)(y + 2)(u + 3)∂v

∂x = 0.
(49)
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Important results in finite dimensions Implicit function theorem

Computational example 2

At (x, y, u, v) = (0, 0, 0, 0), (
−1 1

8 6

)(∂u
∂x
∂v
∂x

)
=

(
0

−24

)
. (50)

And (∂u
∂x
∂v
∂x

)
=

1
−14

(
6 −1

−8 −1

)(
0

−24

)
= −

(
12/7
12/7

)
. (51)
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Important results in finite dimensions Inverse function theorem

What is Transformations?

Example

Fact Let U, and V be two open subsets of Rn. Considering functions as

f : U → V (52)

is called transformation.
If f is a bijection (that is, both one-to-one and onto). Then implies that f−1 : V → U exists.
And both f, f−1 are class of C1.
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Important results in finite dimensions Inverse function theorem

Example

Considering the transformation of Cartesian grid by using the linear mapping
f(x, y) = (2y − x, x + y).

Figure 6: Before transformation. Figure 7: After transformation.
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The Inverse Function Theorem

Theorem: The Inverse Function Theorem
Let f be a C1 map from a neighborhood of x0 ∈ Rn into Rn. If Df(x0) is non-singular, then
there exist neighborhoods U 3 x0 and V 3 y0 = f(x0) such that f : U → V is a C1

diffeomorphism1, and

Df−1(y) = Df(x)−1 for all(x, y) ∈ U × V, y = f(x) (53)

Moreover, if f is Ck, then f is a Ck diffeomorphism on U.

1A diffeomorphism is an isomorphism of smooth manifolds. It is an invertible function that maps one
differentiable manifold to another such that both the function and its inverse are continuously differentiable.
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Proof of The Inverse Function Theorem

We can define the function
F(x, y) = f(x)− y (54)

and, find that
DxF(x0, y) = Df(x0) (55)

is non-singular. And apply the Implicit function theorem to F.
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The usage of Implicit Function Theorem

Example

Problem Suppose that given f : U → V, and y ∈ V, find x by solving

f(x) = y (56)

Example

Fact This problem is often an impossible problem to solve handle.
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The usage of Implicit Function Theorem

The Inverse Function Theorem says

If we know that f(a) = b, then for y near b, the solvability of the nonlinear system can be
established by considering a much easier question about linear algebra, whether the matrix
Df(a) is invertible.
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Computational example

Problem 03

Determine whether the system 
u(x, y, z) = x + xyz
v(x, y, z) = y + xy
w(x, y, z) = z + 2x + 3z2

(57)

can be solved for x, y, z in terms of u, v,w near p = (0, 0, 0).
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Computational example

Let F(x, y, z) = (u, v,w), then

DF(p) =

ux uy uz
vx vy vz
wx wy wz

 (p) =

1 + yz xz xy
y 1 + x 0
2 0 1 + 6z

 (p) =

1 0 0
0 1 0
2 0 1

 (58)

Due to, ∣∣∣∣∣∣
1 0 0
0 1 0
2 0 1

∣∣∣∣∣∣ = 1 6= 0 (59)

By the Inverse Function Theorem, the inverse function F−1(u, v,w) exists near p = (0, 0, 0),
i.e., we can solved for x, y, z in terms of u, v,w near p = (0, 0, 0).
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The Lyusternik theorem

Definition of tangent direction
Let M be a non-empty subset of Rn and x ∈ M. A vector d ∈ Rn is called a tangent direction
of M at x if there exist a sequence xn ∈ M converging to x and a non-negative seqence αn
such that

lim
n→∞

αn(xn − x) = d (60)

The tangent cone of M at x, donated by TM(x), is the set of all tangent direction of M at x.
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The Lyusternik theorem

Theorem: The Lyusternik theorem
Let F : U → Rm be C1 map, where U ⊂ Rn be an open set. Let M = F−1(F(x0)) be the level
set of a point x0 ∈ U. If the derivative DF(x0) is a linear map onto Rm, then the tangent cone
of M is the null space of the linear map DF(x0), that is,

TM(x0) = {d ∈ Rn : DF(x0)d = 0} (61)
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The proof of Lyusternik theorem

If nescessary, we will consider the function

x 7→ f(x + x0)− f(x0) (62)

Assume that x0 = 0, and f(x0) = 0. And, define A := Df(0)
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The proof of Lyusternik theorem
Now, we will prove that

TM(0) ⊆ KerA (63)
If d ∈ TM(0), then there exists points x(t) = td + o(t) ∈ M. We have:

f(x) = 0
f(x(t)) = 0

f(td + o(t) + 0) = 0
tDf(0)(d) + o(t) + f(0) = 0

Df(0)(d) + o(t)
t = 0

lim
t→∞

(
Df(0)(d) + o(t)

t

)
= 0

Df(0)(d) = 0

(64)
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The proof of Lyusternik theorem

Idea to prove the reverse inclusion: the equation f(x) = 0 can be written as f(y, z) = 0in a
form that is suitable for applying the implicit function theorem.
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The proof of Lyusternik theorem

Define K := KerA, and L := K⊥. Since A := Df(0) is onto Rm, we can identify K and L with
R6n − m and Rm respectively, by introducing a suitable basis in Rn.
For a point x ∈ Rn in form that x = (y, z) ∈ K × L, we have A = [Dyf(0),Dzf(0)], and

0 = A(K) = {A(d1, 0) : d1 ∈ Rn−m = Dyf(0)(Rn−m} (65)

so that Dyf(0) = 0. And due to A has rank m, so that Dzf(0) is non-singular.
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The proof of Lyusternik theorem

Following the Implicit function theorem, there exists neighborhoods U1 ⊆ Rm, and
U2 ⊆ Rn−m around the origin and a C1 map α : U1 → U2, α(0) = 0, such that
x = (y, z) ∈ U1 × U2 satisfies f(x) = 0 if and only if z = α(y). The equation f(x) = 0 can be
written as f(y, α(y)). Differentiating this equation

Dyf(y, α(y)) + Dzf(y, α(y)Dα(y) = 0 (66)

At x = 0, Dyf(0) = 0, and Dzf(0) is non-singular, so that Dα(0) = 0
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The proof of Lyusternik theorem

If |y| is small:
α(y) = α(0) + Dα(0)y + o(y) = o(y) (67)

Let d = (d1, 0) ∈ K, as t → 0, the point x(t) := (td1, α(td1)) = (td1, o(t)) lies in M. And that
is f(x(t)) = 0, and satisfies

x(t)− td
t =

(0, o(t))
t → 0 (68)

This implies that K ⊆ TM(0).
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The usage of the Lyusternik theorem

The usage of the Lyusternik theorem (finite version)
• Application in multi-objective optimization [2]
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Conclusion

Conclusion & Future working

Conclusion
• Fully presentation about second conditional optimality
• Fully presentation about implicit function theorem, inverse function theorem, and

Lyusternik theorem.
Future work
• Give more detail about the proof of these theories and theorems.
• Give more examples and applications of these theories and theorems.

PTT Thanh & LN Nam Nonlinear Programming - Unconstrained Problems 63 / 64



Conclusion

References I

O. Güler.
Foundations of optimization, volume 258.
Springer Science & Business Media, 2010.
B. Jiménez and V. Novo.
A finite dimensional extension of lyusternik theorem with applications to multiobjective
optimization.
Journal of mathematical analysis and applications, 270(2):340–356, 2002.

PTT Thanh & LN Nam Nonlinear Programming - Unconstrained Problems 64 / 64


	Optimization problem & Unconstrained optimization
	Second-Order Optimality Conditions
	

	Important results in finite dimensions
	Implicit function theorem
	Inverse function theorem
	Lyusternik theorem

	Conclusion

