Collected Lectures on Real Analysis
- π MIT OpenCourseWare Lectures on Calculus - G. Strang
- π Elementary Calculus: An Approach Using Infinitesimals - Professor H. Jerome Keisler
- π An Introduction to Real Analysis - John K. Hunter (University of California at Davis)
- π Introduction to Real Analysis - William F. Trench (Trinity University, Texas)
- π Basic Analysis: Introduction to Real Analysis - JiΕΓ Lebl
- π Elementary Real Analysis - Thomson, Bruckner
- π Lecture Notes in Real Analysis - Eric T. Sawyer (McMaster University)
- π Real Analysis - C. McMullen
- π Real Analysis for Graduate Students - Richard F. Bass
- π Modern Real Analysis - William P. Ziemer (Indiana University)
- π Mathematical Analysis Vol I - Elias Zakon
- π Mathematical Analysis Vol II - Elias Zakon
- π Advanced Calculus - Lynn Loomis, Schlomo Sternberg
- π Analysis of Functions of a Single Variable - Lawerence Baggett
- π The Calculus of Functions of Several Variables - Dan Sloughter
- π A ProblemText in Advanced Calculus - John M. Erdman
- π Calculus and Linear Algebra. Vol. 1 - Wilfred Kaplan, Donald J. Lewis
- π Calculus and Linear Algebra. Vol. 2 - Wilfred Kaplan, Donald J. Lewis
- π Introduction to Calculus I and II - J.H. Heinbockel
- π Active Calculus - Matt Boelkins
- π Supplements to the Exercises in Chapters 1-7 of Walter Rudin’s “Principles of Mathematical Analysis” - George M. Bergman
- π Calculus Made Easy - Silvanus P. Thompson (1910)
- π Elements of Differential and Integral Calculus - William Anthony Granville (1911)
- π Precalculus - Carl Stitz, Jeff Zeager
Categories: