Some popular partial differential equations (PDEs)
Table of Contents
Single PDEs #
Linear equations #
- Laplace’s equation
$$ \begin{equation} \Delta u = \sum_{i=1}^{n} u_{x_i x_i} = 0. \end{equation} $$
- Helmholtz’s (or eigenvalue) equation
$$ \begin{equation} -\Delta u = \lambda u. \end{equation} $$
- Linear transport equation
$$ \begin{equation} u_t + \sum_{i=1}^{n} b^i u_{x_i} = 0. \end{equation} $$
- Liouville’s equation
$$ \begin{equation} u_t + \sum_{i=1}^{n} (b^i u)_{x_i} = 0. \end{equation} $$
- Heat (or diffusion) equation
$$ \begin{equation} u_t - \Delta u = 0. \end{equation} $$
- Schrödinger’s equation
$$ \begin{equation} i u_t + \Delta u = 0. \end{equation} $$
- Kolmogorov’s equation
$$ \begin{equation} u_t - \sum_{i,j=1}^{n} a^{ij} u_{x_i x_j} + \sum_{i=1}^{n} b^i u_{x_i} = 0. \end{equation} $$
- Fokker–Planck equation
$$ \begin{equation} u _t - \sum _{i,j = 1}^{n} (a^{ij} u) _{x_i x_j} - \sum _{i=1}^{n} (b^i u) _{x_i} = 0. \end{equation} $$
- Wave equation
$$ \begin{equation} u_{tt} - \Delta k = 0. \end{equation} $$
- Klein–Gordon equation
$$ \begin{equation} u_{tt} - \Delta u + m^2 u = 0. \end{equation} $$
- Telegraph equation
$$ \begin{equation} u_{tt} + 2\delta u_t - u_{xx} = 0. \end{equation} $$
- General wave equation
$$ \begin{equation} u_t - \sum_{i,j=1}^{n} a^{ij} u_{x_i x_j} + \sum_{i=1}^{n} b^i u_{x_i} = 0. \end{equation} $$
- Airy’s equation
$$ \begin{equation} u_t + u_{xxx} = 0. \end{equation} $$
- Beam equation
$$ \begin{equation} u_t + u_{xxxx} = 0. \end{equation} $$
Nonlinear equations #
- Eikonal equation
$$ \begin{equation} |Du| = 1. \end{equation} $$
- Nonlinear Poisson equation
$$ \begin{equation} -\Delta u = f(u). \end{equation} $$
- $p$-Laplacian equation
$$ \begin{equation} \operatorname{div}(|Du|^{p-2} Du) = 0. \end{equation} $$
- Minimal surface equation
$$ \begin{equation} \operatorname{div} \left( \frac{Du}{\sqrt{1 + |Du|^2}} \right) = 0. \end{equation} $$
- Monge–Ampère equation
$$ \begin{equation} \det(D^2 u) = f. \end{equation} $$
- Hamilton–Jacobi equation
$$ \begin{equation} u_t + H(Du, x) = 0. \end{equation} $$
- Scalar conservation law
$$ \begin{equation} u_t + \operatorname{div} F(u) = 0. \end{equation} $$
- Inviscid Burgers’ equation
$$ \begin{equation} u_t + u u_x = 0. \end{equation} $$
- Scalar reaction-diffusion equation
$$ \begin{equation} u_t - \Delta u = f(u). \end{equation} $$
- Porous medium equation
$$ \begin{equation} u_t - \Delta(u^m) = 0. \end{equation} $$
- Nonlinear wave equation
$$ \begin{equation} u_{tt} - \Delta u + f(u) = 0. \end{equation} $$
- Korteweg–deVries (KdV) equation
$$ \begin{equation} u_t + u u_x + u_{xxx} = 0. \end{equation} $$
- Nonlinear Schrödinger equation
$$ \begin{equation} i u_t + \Delta u = f(|u|^2) u. \end{equation} $$
Systems of PDEs #
Linear systems #
- Equilibrium equations of linear elasticity
$$ \begin{equation} \mu \Delta u + (\lambda + \mu) D(\operatorname{div} u) = 0. \end{equation} $$
- Evolution equations of linear elasticity
$$ \begin{equation} u_{tt} - \mu \Delta u - (\lambda + \mu) D(\operatorname{div} u) = 0. \end{equation} $$
- Maxwell’s equations
$$ \begin{equation} \begin{cases} E_t = \operatorname{curl} B \\ B_t = -\operatorname{curl} E \\ \operatorname{div} B = \operatorname{div} E = 0. \end{cases} \end{equation} $$
Nonlinear systems #
- System of conservation laws
$$ \begin{equation} u_t + \operatorname{div} F(u) = 0. \end{equation} $$
- Reaction-diffusion system
$$ \begin{equation} u_t - \Delta u = f(u). \end{equation} $$
- Euler’s equations for incompressible, inviscid flow
$$ \begin{equation} \begin{cases} u_t + u \cdot Du = -Dp \ \operatorname{div} u = 0. \end{cases} \end{equation} $$
- Navier–Stokes equations for incompressible, viscous flow