Pre-print articles on gradient-clipping methods
Table of Contents
1. Why gradient clipping accelerates training: A theoretical justification for adaptivity #
Authors: Jingzhao Zhang, Tianxing He, Suvrit Sra, Ali Jadbabaie
Abstract: We provide a theoretical explanation for the effectiveness of gradient clipping in training deep neural networks. The key ingredient is a new smoothness condition derived from practical neural network training examples. We observe that gradient smoothness, a concept central to the analysis of first-order optimization algorithms that is often assumed to be a constant, demonstrates significant variability along the training trajectory of deep neural networks. Further, this smoothness positively correlates with the gradient norm, and contrary to standard assumptions in the literature, it can grow with the norm of the gradient. These empirical observations limit the applicability of existing theoretical analyses of algorithms that rely on a fixed bound on smoothness. These observations motivate us to introduce a novel relaxation of gradient smoothness that is weaker than the commonly used Lipschitz smoothness assumption. Under the new condition, we prove that two popular methods, namely, \emph{gradient clipping} and \emph{normalized gradient}, converge arbitrarily faster than gradient descent with fixed stepsize. We further explain why such adaptively scaled gradient methods can accelerate empirical convergence and verify our results empirically in popular neural network training settings.
2. Revisiting Gradient Clipping: Stochastic bias and tight convergence guarantees #
Authors: Anastasia Koloskova, Hadrien Hendrikx, Sebastian U. Stich
Abstract: Gradient clipping is a popular modification to standard (stochastic) gradient descent, at every iteration limiting the gradient norm to a certain value $c >0$. It is widely used for example for stabilizing the training of deep learning models (Goodfellow et al., 2016), or for enforcing differential privacy (Abadi et al., 2016). Despite popularity and simplicity of the clipping mechanism, its convergence guarantees often require specific values of c and strong noise assumptions.
In this paper, we give convergence guarantees that show precise dependence on arbitrary clipping thresholds c and show that our guarantees are tight with both deterministic and stochastic gradients. In particular, we show that (i) for deterministic gradient descent, the clipping threshold only affects the higher-order terms of convergence, (ii) in the stochastic setting convergence to the true optimum cannot be guaranteed under the standard noise assumption, even under arbitrary small step-sizes. We give matching upper and lower bounds for convergence of the gradient norm when running clipped SGD, and illustrate these results with experiments.
3. Clipping Improves Adam-Norm and AdaGrad-Norm when the Noise Is Heavy-Tailed #
Authors: Savelii Chezhegov, Yaroslav Klyukin, Andrei Semenov, Aleksandr Beznosikov, Alexander Gasnikov, Samuel Horváth, Martin Takáč, Eduard Gorbunov
Abstract: Methods with adaptive stepsizes, such as AdaGrad and Adam, are essential for training modern Deep Learning models, especially Large Language Models. Typically, the noise in the stochastic gradients is heavy-tailed for the later ones. Gradient clipping provably helps to achieve good high-probability convergence for such noises. However, despite the similarity between AdaGrad/Adam and Clip-SGD, the current understanding of the high-probability convergence of AdaGrad/Adam-type methods is limited in this case. In this work, we prove that AdaGrad/Adam (and their delayed version) can have provably bad high-probability convergence if the noise is heavy-tailed. We also show that gradient clipping fixes this issue, i.e., we derive new high-probability convergence bounds with polylogarithmic dependence on the confidence level for AdaGrad-Norm and Adam-Norm with clipping and with/without delay for smooth convex/non-convex stochastic optimization with heavy-tailed noise. Our empirical evaluations highlight the superiority of clipped versions of AdaGrad/Adam-Norm in handling the heavy-tailed noise.