Pre-print articles on Adagrad-variant methods
Table of Contents
1. Heavy-Tailed Class Imbalance and Why Adam Outperforms Gradient Descent on Language Models #
Authors: Frederik Kunstner, Robin Yadav, Alan Milligan, Mark Schmidt, Alberto Bietti
Abstract: Adam has been shown to outperform gradient descent on large language models by a larger margin than on other tasks, but it is unclear why. We show that a key factor in this performance gap is the heavy-tailed class imbalance found in language tasks. When trained with gradient descent, the loss of infrequent words decreases more slowly than the loss of frequent ones. This leads to a slow decrease on the average loss as most samples come from infrequent words. On the other hand, Adam and sign-based methods are less sensitive to this problem. To establish that this behavior is caused by class imbalance, we show empirically that it can be reproduced across architectures and data types, on language transformers, vision CNNs, and linear models. On a linear model with cross-entropy loss, we show that class imbalance leads to imbalanced, correlated gradients and Hessians that have been hypothesized to benefit Adam. We also prove that, in continuous time, gradient descent converges slowly on low-frequency classes while sign descent does not.
2. Accelerated Parameter-Free Stochastic Optimization #
Authors: Itai Kreisler, Maor Ivgi, Oliver Hinder, Yair Carmon
Abstract: We propose a method that achieves near-optimal rates for smooth stochastic convex optimization and requires essentially no prior knowledge of problem parameters. This improves on prior work which requires knowing at least the initial distance to optimality d0. Our method, U-DoG, combines UniXGrad (Kavis et al., 2019) and DoG (Ivgi et al., 2023) with novel iterate stabilization techniques. It requires only loose bounds on d0 and the noise magnitude, provides high probability guarantees under sub-Gaussian noise, and is also near-optimal in the non-smooth case. Our experiments show consistent, strong performance on convex problems and mixed results on neural network training.
3. Universal Gradient Methods for Stochastic Convex Optimization #
Authors: Anton Rodomanov, Ali Kavis, Yongtao Wu, Kimon Antonakopoulos, Volkan Cevher
Abstract: We develop universal gradient methods for Stochastic Convex Optimization (SCO). Our algorithms automatically adapt not only to the oracle’s noise but also to the Hölder smoothness of the objective function without a priori knowledge of the particular setting. The key ingredient is a novel strategy for adjusting step-size coefficients in the Stochastic Gradient Method (SGD). Unlike AdaGrad, which accumulates gradient norms, our Universal Gradient Method accumulates appropriate combinations of gradient- and iterate differences. The resulting algorithm has state-of-the-art worst-case convergence rate guarantees for the entire Hölder class including, in particular, both nonsmooth functions and those with Lipschitz continuous gradient. We also present the Universal Fast Gradient Method for SCO enjoying optimal efficiency estimates.